bugfree Icon
interview-course
interview-course
interview-course
interview-course
interview-course
interview-course
interview-course
interview-course

Data Interview Question

Linear Combination of Independent Normal Variables

bugfree Icon

Hello, I am bugfree Assistant. Feel free to ask me for any question related to this problem

Solution & Explanation

To find the mean and variance of the expression 2XY2X - Y, where XX and YY are independent normal random variables, we can utilize properties of linear combinations of random variables.

Given:

  • XN(3,4)X \sim N(3, 4)

    • Mean of XX: μX=3\mu_X = 3
    • Variance of XX: σX2=4\sigma_X^2 = 4
  • YN(1,4)Y \sim N(1, 4)

    • Mean of YY: μY=1\mu_Y = 1
    • Variance of YY: σY2=4\sigma_Y^2 = 4

Expression:

  • We need to find the mean and variance of 2XY2X - Y.

Mean of 2XY2X - Y:

The mean of a linear combination aX+bYaX + bY is given by: E(aX+bY)=aE(X)+bE(Y)E(aX + bY) = aE(X) + bE(Y)

For 2XY2X - Y:

  • a=2a = 2, b=1b = -1
  • E(2XY)=2E(X)E(Y)E(2X - Y) = 2E(X) - E(Y)
  • E(2XY)=2(3)1=61=5E(2X - Y) = 2(3) - 1 = 6 - 1 = 5

So, the mean of 2XY2X - Y is 5.

Variance of 2XY2X - Y:

The variance of a linear combination aX+bYaX + bY is given by: Var(aX+bY)=a2Var(X)+b2Var(Y)+2abCov(X,Y)Var(aX + bY) = a^2Var(X) + b^2Var(Y) + 2ab \cdot Cov(X, Y)

Since XX and YY are independent, Cov(X,Y)=0Cov(X, Y) = 0, thus: Var(2XY)=22Var(X)+(1)2Var(Y)Var(2X - Y) = 2^2Var(X) + (-1)^2Var(Y)

  • Var(2XY)=4×4+1×4Var(2X - Y) = 4 \times 4 + 1 \times 4
  • Var(2XY)=16+4=20Var(2X - Y) = 16 + 4 = 20

So, the variance of 2XY2X - Y is 20.

Conclusion:

The expression 2XY2X - Y follows a normal distribution with:

  • Mean: 5
  • Variance: 20

Thus, 2XYN(5,20)2X - Y \sim N(5, 20).

This analysis demonstrates how to utilize properties of linear combinations of independent normal variables to determine the resulting distribution's parameters.